

Django Raster

Django-raster provides raster data functionality for Django projects with a
PostGIS database backend. It is based on the Django internal raster data type
RasterField [https://docs.djangoproject.com/en/dev/ref/contrib/gis/model-api/#rasterfield] and GDAL bindings through GDALRaster [https://docs.djangoproject.com/en/dev/ref/contrib/gis/gdal/#raster-data-objects].

The django-raster repository is hosted on GitHub [https://github.com/geodesign/django-raster].

Contents

	Installation

	Introduction

	Raster Layers

	Rendering tiles

	Raster Algebra

	Settings

	API Reference

Indices and tables

	Index

	Module Index

Installation

Django-raster requires Django >= 1.9 configured with a PostGIS [https://docs.djangoproject.com/en/1.9/ref/contrib/gis/install/postgis/] backend
and the GDAL [https://docs.djangoproject.com/en/1.9/ref/contrib/gis/install/geolibs/#gdal] library. The use of Celery [http://celeryproject.org] is highly recommended (see
below).

The package is available on PyPI, you can install it with:

pip install django-raster

To integrate the package into Django, add raster to your
INSTALLED_APPS setting like this:

INSTALLED_APPS = (
 ...
 'raster',
)

Django-raster has its own url structure (to serve raster data through a
TMS endpoint for instance). To activate those urls, add the raster
urls to your main urlconf:

urlpatterns = [
 ...
 url(r'^raster/', include('raster.urls')),
]

Finally, migrate your database to create the tables required by django-raster:

python manage.py migrate

Distributed Task Management

Django-raster works best with Celery [http://celeryproject.org], a distributed task queue manager.
Parsing raster files is a process that will time out most of the time if done
through regular http requests. If Celery [http://celeryproject.org] is installed, several long running
tasks will be executed asynchronously in django-raster.

If you have Celery [http://celeryproject.org] configured for your project, add the following
to your project’s settings to tell django-raster to use it:

RASTER_USE_CELERY = True

Introduction

Django-raster provides high level utilities to work with raster data [http://en.wikipedia.org/wiki/GIS_file_formats#Raster] in
Django. It is based on the Django internal GDALRaster [https://docs.djangoproject.com/en/1.9/ref/contrib/gis/gdal/#raster-data-objects] object and
RasterField [https://docs.djangoproject.com/en/1.9/ref/contrib/gis/model-api/#rasterfield] datatype.

There are three main components in this package:

	Parser utility to ingest rasters through the admin or the django shell.

	Tile Map Service (TMS) endpoint to render raster data.

	Raster calculator to compute and render raster calculator expressions.

Raster files are stored in a file field attached to RasterLayer
objects. Data can be added by creating raster layers through the admin
interface or the Django shell.

After creating a RasterLayer object, the raster data will be parsed
automatically. The parsing can be executed asynchronously if Celery [http://celeryproject.org] is
integrated into the Django project. The raster parser will automatically
extract the data in the raster and store it as PostGIS raster tiles on the
database.

After ingesting the data, raster styles can be defined through the admin
interface which are then used to render the data through TMS endpoints. The
endpoints can be used in Javascript mapping software such as OpenLayers or
Leaflet.

Limitations

The main limitation of the django-raster package is that it is focused on
single band rasters. For most of the functionality, only the first band in
the raster is used. While the tile parser processes and stores all bands of
the input rasters, for the TMS endpoints and raster algebra calculations,
currently only the first band is used.

Another limitation is that the projection of the raster tiles is fixed to
the Web Mercator Projection (EPSG 3857) [http://epsg.io/3857]. This is because a large part of
online mapping applications use this projection, especially TMS services.

Raster Layers

A RasterLayer is django-raster’s representation of raster files. It
can be used to input raster data into your application. In most cases there is
one RasterLayer for each raster file.

Storing a Raster File

Raster files can be uploaded through the admin interface and are stored in the
RasterLayer model. Like for any other model, raster layers can also be
created using the Django shell. Each raster file corresponds to one
RasterLayer object. When adding a new raster file, the following
properties are required:

	Layer name

	Raster file (either as file, http url or s3 url)

	Data type

The datatype tells django-raster how to interpret the pixel values. The choices
are “continuous”, “categorical”, “mask”, or “rank ordered”. By default,
django-raster extracts all other raster metadata from the input file. The
optional input parameters are the following

	Description

	SRID

	Nodata value

	Max zoom value

	Legend

The srid, the nodata value and the maximum zoom value are all determined
automatically from the raster properties if left blank. The max zoom value
specifies the highest z-x-y zoom level to create tiles for (see below).

The legend attribute is a foreign key to a raster Legend object. If
the raster legend is specified, it is used as default style when rendering
tiles from that raster. How raster tiles are rendered is described in detail in
the Rendering tiles section.

There are also three boolean flags that allow finer grained control over the
raster layer parse process.

	Next higher zoom level

	Build pyramids

	Store reprojected

The raster layer is “snapped” to the next higher zoom level by default. To
snap the raster to the next lower zoom level when compared to the true
resolution of the data, the “next higher” flag has to be disactivated.

There is a “build pyramids” flag that controls whether the tiles should be created
also for the lower zoom levels. This is enabled by default and is recommended
in most cases as the tile renderer will expect those tiles to be present.

During parsing, the raster is reprojected to the web mercator projection. This
operation is costly and is only done once by default. Django-raster stores a
reprojected version in a separate model. To prevent the storage of the
reprojected file, the “store reprojected” flag can be disactivated. Note that
this will result in less use of storage, but an overhead when parsing,
especially for asynchronous parsing where the file will be reprojected by each
worker.

Specifying an Url as Source

The raster file can be uploaded directly using the raster file field, or passed
as a url either to a public http(s) address, or a url like string, pointing
directly to an s3 bucket. The http(s) urls are regular web urls.

For the s3 links, the boto3 library is used to directly access an s3 bucket
and download it from there. In this way, private or requester-pays buckets can
be used as source. The credentials for accessing the buckets need to be configured
so that boto3 can see them.

The url should have the following structure

s3://BUCKET_NAME/BUCKET_KEY

for instance,

s3://sentinel-s2-l1c/tiles/12/S/VG/2017/9/15/0/B12.jp2

gets the same file as the following regular http url

http://sentinel-s2-l1c.s3.amazonaws.com/tiles/12/S/VG/2017/9/15/0/B12.jp2

but instead of making a regular web request, it accesses the file using boto3.

Note that for requester pays bucket this might incur charges even if the
requester is not the owner of the bucket.

Raster Tile Creation

Upon uploading a file, django-raster automatically parses the raster file. The
parser extracts metadata from the raster and its bands, and creates tiles. The
progress or possible errors in parsing is written to a parse log object, which
is exposed on the RasterLayer admin interface.

The parser automatically creates a tile pyramid in the z-x-y scheme of a TMS.
By default, the highest zoom level for which to create tiles is calculated
automatically from the resolution of the raster. The zoom level is set such
that the resolution of the highest zoom is at least the original resolution.
This behavior can be changed by manually setting the highest zoom level, using
the max_zoom_value field.

The tiles are stored as RasterTile objects. The raster data itself is
stored as PostGIS rasters through a RasterField [https://docs.djangoproject.com/en/1.9/ref/contrib/gis/model-api/#rasterfield]. The tiles are managed
automatically through their parent RasterLayer object, and do normally
not require any manual user manipulation.

Asynchronous Parsing

It is highly recommended to configure the Django application with Celery [http://celeryproject.org],
to parse the rasters asynchronously. For most raster files, the creation of
tiles takes several minutes or even hours to complete. Since the parsing is
triggered automatically upon upload, the html requests in the admin will often
time out. For more information about how to configure Celery, consult the
Installation section.

Rendering tiles

After creating and parsing a RasterLayer, the tiles for that layer can
be accessed through the tiles url. The raster urls have to be added to the
application’s url patterns. Here we assume that the /raster/ base url is used
as proposed in the Installation section.

The tiles url is structured as follows,

/raster/tiles/layer_id/{z}/{x}/{y}.png

where the layer_id is the primary key of a raster layer. This structure can be
used directly in online mapping software such as OpenLayers [http://openlayers.org/] or Leaflet [http://leafletjs.com/]. An
example request could look like this: /raster/tiles/23/8/536/143.png,
returning a tile in png format of the layer with ID pk=23 at zoom level
z=8 and indexes x=536 and y=143.

By default, the tiles are rendered using simple grayscale. To apply a custom
colormap, a Legend needs to be assigned to the layer. Raster layers
have an optional foreign key to a Legend object, which can be set through the
admin interface.

Legends

Legends are objects that are used to interpret raster data. This includes
the cartographic information (colors), but also the semantics of the data
(such as names). Legends be created through the admin interface.

A legend is stored as in the Legend model, which is a collection
of LegendEntry objects. Each of the entries have an expression for
classifying the data and a semantic meaning of the expression. The semantics
of the expression are stored in the LegendSemantics model. Here is
an example for a legend representing two temperatures:

>>> from raster.models import Legend, LegendEntry, LegendEntryOrder, LegendSemantics
>>> hot_semantics = LegendSemantics.objects.create(name='Hot')
>>> cold_semantics = LegendSemantics.objects.create(name='Cold')
>>> hot_entry = LegendEntry.objects.create(semantics=cold, expression='0', color='#0000FF')
>>> cold_entry = LegendEntry.objects.create(semantics=hot, expression='1', color='#FF0000')
>>> legend = Legend.objects.create(title='Temperatures')
>>> LegendEntryOrder.objects.create(legend=legend, legendentry=entry, code='1')
>>> legend.json
... '[{"color": "#FFFFFF", "expression": "1", "name": "Earth"}]'

Legend Entries

LegendEntry entries relate semantics and a color value with a range
of pixel values. One entry has a foreign key to a LegendSemantics
object, a color in hex format and an expression.

The expression is a classification of pixels. It describes a range of pixel
values in the data. It is either an exact number for discrete rasters, or a
formula for continuous rasters:

expression = "3" # Matches all pixels with an exact value of 3

For more complicated expressions, a logical expression can be specified through
a formula. The variable x represents the pixel value in the formula. Here
are two examples of valid formula expressions:

Match pixel values bigger than -3 and smaller or equal than 1
expression = "(-3.0 < x) & (x <= 1)"
Match all pixels with values smaller or equal to one
expression = "x <= 1"

Formula expressions are currently not validated on input. Wrongly specified
formulas might lead to errors when rendering raster tiles. Check your formulas
if unexpected errors happen on the TMS endpoints.

Continuous Color Schemes

The examples above show how to assign discrete pixel value ranges to individual
colors. This allows applying discrete color schemes with a limited number of
breaks to continuous rasters.

Django-raster also supports applying continuous color scales. Colormaps are
interpreted as continuous color schemes if the keyword continuous
is provided as a key in the colormap dictionary.

The continuous color scheme requires at least two colors, which are
interpolated over the range of pixel values. These colors can be specified
using the from and to keywords. A third color can be specified to
force interpolation through another color in the middle of the range. This
intermediate color can be specified using the over key.

The range over which the colors are interpolated is determined automatically
from the raster layer metadata if possible, and falls back to the range of
the individual tile data. The fallback might result in a visually confusing
color scheme, as the range of pixel values in a single tile may vary
substantially and are not representative of the raster. The range can
therefore also be specified manually using the range parameter.

An example for a continuous color scheme, which will interpolate all values
from 0 to 100 into colors ranging from red to blue over green is
the following:

{
 "continuous": "True",
 "from": [255, 0, 0],
 "to": [0, 0, 255],
 "over": [0, 255, 0],
 "range": [0, 100]
}

The keys continuous, from and to are required. The over
key is an optional intermediate color for the interpolation. The range
key specifies the pixel values over which to interpolate. This parameter
is estimated from metadata if not provided in the legend. All other keys
are ignored in the continuous color mode, which is triggered if the
continuous key is found in the legend.

Overriding the colormap and the legend

While a legend and a colormap can be associated with a raster layer objects in
the database it is nonetheless possible to overwrite the legend or colormap
used to render the tiling. Overriding is done via the following url
parameters:

	Parameter

	Description

	legend

	Use given legend to render the tiles

	store

	One of database, session. Fetch legend from database or session, default is database

	colormap

	Overrides the raster layer’s legend colormap.

Examples

If you want to overrides the legend to use MyOtherLegend stored in database you
can use the following url for the tiling (assuming 23 is your rasterlayer_id):

/raster/tiles/23/{z}/{x}/{y}.png?legend=MyOtherLegend

If you want to use the legend from the session with the same name as above you
can use following one:

/raster/tiles/23/{z}/{x}/{y}.png?legend=MyOtherLegend&store=session

Note

You can set and get a session colormap with the help of shortcuts functions
set_session_colormap() and get_session_colormap().

And finally if you want to provide this custom colormap

{
 "1": "#FF0000",
 "2": "#00FF00",
 "3": "#0000FF"
}

you can do so by using this url:

/raster/tiles/{z}/{x}/{y}.png?colormap=%22%7B1%3A%20'%23FF0000'%2C%202%3A%20'%2300FF00'%2C%203%3A%20'%230000FF'%7D%22

The colormap value is the URIEncoded version of the json stringified colormap object.

Image formats

All endpoints (regular tiles, algebra and RGB) support three formats: PNG, JPEG
and TIFF. The different formats can be requested by changing the file extension
in the url. The extensions to use are .png, .jpg, and .tif.

The PNG and JPEG endpoints behave the same way, except that JPEG images do not
support an alpha channel. Nodata pixels are rendered in black.

The TIFF endpoint will return the raw data produced from the request in a
georeferenced GeoTIFF file. It therefore ignores any of the rendering parameters
and simply returns the raw values of the result of the request. This might be
useful for analysis purposes, where raster algebra results can be obtained in
raw form for further downstream processing.

Raster Algebra

Django-raster has raster calculator functionality. The raster calculator
allows rendering raster tiles based on algebraic formulas. The use is very
similar to a standard z/x/y tile endpoint, but allows the evaluation of
a broad range of algebraic expressions applied to existing pixel values.
The z/x/y structure can be used directly in online mapping software such
as OpenLayers [http://openlayers.org/] or Leaflet [http://leafletjs.com/].

Similar to the regular tiles endpoint, the django-raster url patterns need
to be installed for the raster algebra endpoint to work. For the documentation
we assume that the /raster/ base url is used as proposed in the
Installation section.

Raster algebra TMS endpoint

The raster algebra url base is used only to specify the z/x/y tile index. All
the rest of the configuration is done through the query parameters. The input
to the raster algebra is a named list of RasterLayer ids and a formula
for evaluation. These values are passed to the backend through two required
query parameters: layers and formula.

The layers query parameter identifies which raster layers to use for evaluation.
It is a comma separated list of variable-name and RasterLayer id pairs. The
variable names are matched with the names in the formula. An example is
layers=a=2,b=4 which will match RasterLayer with id 2 to variable
name a and the layer with id 4 with the variable name b.

The formula query parameter is a string specifying a formula for evaluation.
The formula is an algebraic expression based on the names given to the layers
in the layers query parameter. The formula has to be an expression that
can be evaluated by the FormulaParser. It accepts a broad range of
algebraic expressions. The endpoint supports most of the common mathematical
operators (+, -, *, /, etc), functions (sin, cos,
exp, etc.), and logical operators (&, !, >, =, etc.).
It also has a set of predefined constants through reserved keywords such
as pi PI or the Euler number E.

Putting it all together, an example request to the raster algebra endpoint
could look like this:

/raster/algebra/{z}/{x}/{y}.png?layers=a=1,b=3,c=6&formula=log(a+b)*c&legend=5

In addition to the required query parameters: layers and formula, a
Legend id can be specified using the legend query parameter.
If specified, the legend will be used to interpret the result of the algebra
expression. This is convenient to use predefined colormaps for the endpoint.

Dynamic colormap

For a more dynamic rendering scheme, a dynamic colormap can be passed to the
endpoint using the colormap query parameter. The following request would
color all pixels that result in a value bigger than zero in red, and all other
pixels in green.

/raster/algebra/{z}/{x}/{y}.png?layers=a=1,b=3,c=6&formula=log(a+b)*c&colormap={'x>0':'#FF0000','x<=0':'#00FF00'}

Using specific bands

By default, the algebra and rgb endpoints use the first band in each layer
specified. To use a specific band, use a 'variable:band' syntax, where
variable is the name of the variable, and band is the band index. For example
{'a:3': 23} would match band 3 of the RasterLayer with the id
23 to the variable name a.

Encoding

Both the colormap and the formula should be properly url encoded. The
examples here are not encoded and should be considered as instructive
examples only.

RGB endpoint

The algebra endpoint can also be used to render RGB images. For this, only
three query parameters are expected: r, g, and b. If these
three parameters are found in the list of query parameters, and no formula
has been specified, the three input bands are interpreted as RGB channels
of an RGB image. For example to use raster layer with id 1 as red,
id 3 as green and id 6 as blue, the following url can be used:

/raster/algebra/{z}/{x}/{y}.png?layers=r=1,g=3,b=6

If the raw data in the tiles is not already scaled to the range [0, 255], an
additional scaling factor can be specified, which will be used to rescale
all three bands to the default RGB color range. For instance, the following
query would assume that the input bands have values in the range of
[5, 10000], and would rescale them to the RGB color space.

/raster/algebra/{z}/{x}/{y}.png?layers=r=1,g=3,b=6&scale=5,10000

An alpha channel can be activated by passing the alpha query parameter. The
alpha parameter makes all the pixels transparent that have values equal to
0 in all three RGB channels.

For multi band rasters that have the rgb channels as bands and not in separate
files, the band accessor syntax can be used. For instance, if the layer with id
23 is a 3-band RGB raster, the following would render the tiles as RGB
using bands 0, 1, and 2:

/raster/algebra/{z}/{x}/{y}.png?layers=r:0=23,g:1=23,b:2=23

Image Enhancement

The algebra and TMS endpoints support image enhancement using the
ImageEnhance PIL module. The following query parameters arguments
are passed to the corresponding image enhancers. The parameter value
is passed to the enhancer as factor argument.

Enhancer query parameters.

	Query

	Enhancer

	enhance_color

	ImageEnhance.Color

	enhance_contrast

	ImageEnhance.Contrast

	enhance_brightness

	ImageEnhance.Brightness

	enhance_sharpness

	ImageEnhance.Sharpness

The following example enhances the contrast of tiles from the RGB endpoint by a
factor of 3:

/raster/algebra/{z}/{x}/{y}.png?layers=r=1,g=3,b=6&scale=5,10000&enhance_contrast=3

Pixel Value Lookup

Single pixel values for raster algebra expressions can be looked up by
coordinates. The endpoint works very similar to the raster algebra TMS
endpoint, but instead of Z-X-Y tile indices, coordinates are passed through
the url. The query parameters are analogue to the algebra TMS endpoint as
described above.

The base url structure is

/raster/pixel/{xcoord}/{ycoord}/

For instance, the following request will return the pixel value of the
requested raster algebra expressino for the coordinates xcoord = -9218229
and ycoord = 3229269. The coordinates must be provided in the web mercator
projection (EPSG 3857).

/raster/pixel/-9218229/3229269/?layers=a=1,b=3,c=6&formula=log(a+b)*c

Formula parser

At the heart of the raster calculator is the FormulaParser, which
is based on the pyparsing [http://pyparsing.wikispaces.com/] package. The FormulaParser is a general
purpose formula evaluation class. It is It does not know about rasters and
operates with Numpy arrays directly. To use it, you need a dictionary with
Numpy arrays of equal shape and a formula as string. The keys in the dictionary
are the variable names and are used to match data to variables in the formula.
Here are some examples of how to use the formula parser:

Import parser and instantiate an instance.
>>> from raster.algebra.parser import FormulaParser
>>> parser = FormulaParser()
Create a data dictionary and evaluate a simple sum.
>>> data = {'a': range(5), 'b': range(5)}
>>> formula = 'a + b'
>>> parser.evaluate(data, formula)
... array([0, 2, 4, 6, 8])
Use the sin function and divide by b.
>>> formula = 'sin(a) / b'
>>> parser.evaluate(data, formula)
... array([nan, 0.84147098, 0.45464871, 0.04704, -0.18920062])
Use a logical array.
>>> data.update({'a_new_var': [True, False, False, True, False]})
>>> formula = '!a_new_var * a + 3'
>>> parser.evaluate(data, formula)
... array([3., 4., 5., 3., 7.])
Use the PI keyword in a formula.
>>> formula = 'a * PI'
>>> parser.evaluate(data, formula)
>>> array([0. , 3.14159265, 6.28318531, 9.42477796, 12.56637061])

Raster algebra parser

The RasterAlgebraParser class is a wrapper that can be used to apply
the generic formula parser to raster objects directly. The use is identical
to the generic case except that the objects in the data dictionary are expected
to be :class:GDALRaster objects. The data arrays are extracted from the raster
objects automatically and are passed to the formula parser. The result array is
converted into a GDALRaster before returning.

By default, the first band is used for calculations, to specify a specific band
to be used the syntax is 'variable:band', where variable is the name of the
variable, and band is the band index. For example {'a:3': rst} would match
band 3 of the GDALRaster rst to the variable name a.

Here is a complete example for how to use the RasterAlgebraParser.

>>> from raster.algebra.parser import RasterAlgebraParser
>>> parser = RasterAlgebraParser()
>>> base = {
>>> 'datatype': 1,
>>> 'driver': 'MEM',
>>> 'width': 2,
>>> 'height': 2,
>>> 'srid': 3086,
>>> 'origin': (500000, 400000),
>>> 'scale': (100, -100),
>>> 'skew': (0, 0),
>>> 'bands': [
>>> {'nodata_value': 10},
>>> {'nodata_value': 10},
>>> {'nodata_value': 10},
>>>],
>>> }
>>> base['bands'][0]['data'] = range(20, 24)
>>> base['bands'][1]['data'] = range(10, 14)
>>> rast1 = GDALRaster(base)
>>> base['bands'][0]['data'] = [1, 1, 1, 1]
>>> rast2 = GDALRaster(base)
>>> base['bands'][0]['data'] = [30, 31, 32, 33]
>>> base['bands'][0]['nodata_value'] = 31
>>> rast3 = GDALRaster(base)
>>> data = dict(zip(['x:1', 'y:0', 'z'], [rast1, rast2, rast3]))
>>> rst = parser.evaluate_raster_algebra('x*(x>11) + 2*y + 3*z*(z==30)')
>>> rst.bands[0].data()
... array([[10., 10.],
... [14., 15.]])

Keywords, Operators and Functions

The following tables list the available operators, functions and reserved
keywords from the FormulaParser and the corresponding raster
calculator.

Keyword symbols

	Keyword

	Symbol

	Euler Number

	E

	Pi

	PI

	True Boolean

	TRUE

	False Boolean

	FALSE

	Null

	NULL

	Infinite

	INF

Operator symbols

	Operator

	Symbol

	Add

	+

	Substract

	-

	Multiply

	*

	Divide

	/

	Power

	^

	Equal

	==

	Not Equal

	!=

	Greater

	>

	Greater or Equal

	>=

	Less

	<

	Less or Equal

	<=

	Logical Or

	|

	Logial And

	&

	Logcal Not

	!

	Fill Nodata Values

	~

	Unary And

	+

	Unary Minus

	-

	Unary Not

	!

Function symbols

	Function

	Symbol

	Sinus

	sin

	Cosinus

	cos

	Tangens

	tan

	Natural Logarithm

	log

	Exponential Function

	exp

	Absolute Value

	abs

	Integer

	int

	Round

	round

	Sign

	sign

	Minimum

	min

	Maximum

	max

	Mean

	mean

	Median

	median

	Standard Deviation

	std

	Sum

	sum

Settings

A list of available settings to customize django-raster’s behavior.

Asynchronous raster parsing

Determines whether to use celery tasks for parsing raster layers. It is highly
recommended to configure celery, as raster parsing can take quite a while and
the parsing through normal web requests will often timed out, even for medium
sized raster.

RASTER_USE_CELERY = False

Parser working directory

Use this to specify a custom working directory used by the django-raster
package when parsing raster files. This is where intermediate files are stored.
Defaults to the normal temporary directory of the machine.

RASTER_WORKDIR = None

All in one parse task

For some applications where the size of the rasters is small, the distributed
raster parsing might have more overhead than gain. The distributed parsing can
be disactivated with the following setting. If it is set to True, rasters
are parsed in single celery tasks.

RASTER_PARSE_SINGLE_TASK = True

Parse Batch Size

During parsing of a raster, tiles are written to the database in batches, using
the bulk_create method. The size of each batch in the loop can be controlled
by using the setting below. Defaults to 500 tiles.

RASTER_BATCH_STEP_SIZE = 500

S3 Endpoint URL

Set the S3 compatible endpoint used when retrieving raster tile sources from S3.

RASTER_S3_ENDPOINT_URL = "http://localhost:4572"

API Reference

	Shortcuts

	Raster Utilities

Shortcuts

	
set_session_colormap(session, key, colormap)

	Store the colormap in the user session.

	
get_session_colormap(session, key)

	Get the colormap form a legend stored in the user session and identified
by key.

Raster Utilities

Django-raster hosts some utilities that ease the interaction with raster data.
The functions are located in raster.utils and raster.tiles.utils.

	
pixel_value_from_point(raster, point, band=0)

	Return the pixel value for the coordinate of the input point from selected
band.

The input can be a point or tuple, if its a tuple it is assumed to be a
pair of coordinates in the reference system of the raster. The band index
to be used for extraction can be specified with the band keyword.

Example:

Create a raster.
>>> raster = GDALRaster({
 'width': 5,
 'height': 5,
 'srid': 4326,
 'bands': [{'data': range(25)}],
 'origin': (2, 2),
 'scale': (1, 1)
})
Create a point at origin
>>> point = OGRGeometry('SRID=4326;POINT(2 2)')
Get pixel value at origin.
>>> pixel_value_from_point(raster, point)
... 0
Get pixel value from within the raster, using coordinate tuple input.
>>> pixel_value_from_point(raster, (2, 3.5))
... 5

Index

 G
 | P
 | S

G

 	
 	get_session_colormap() (built-in function)

P

 	
 	pixel_value_from_point() (built-in function)

S

 	
 	set_session_colormap() (built-in function)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Django Raster

 		
 Installation

 		
 Distributed Task Management

 		
 Introduction

 		
 Limitations

 		
 Raster Layers

 		
 Storing a Raster File

 		
 Specifying an Url as Source

 		
 Raster Tile Creation

 		
 Asynchronous Parsing

 		
 Rendering tiles

 		
 Legends

 		
 Legend Entries

 		
 Continuous Color Schemes

 		
 Overriding the colormap and the legend

 		
 Examples

 		
 Image formats

 		
 Raster Algebra

 		
 Raster algebra TMS endpoint

 		
 Dynamic colormap

 		
 Using specific bands

 		
 Encoding

 		
 RGB endpoint

 		
 Image Enhancement

 		
 Pixel Value Lookup

 		
 Formula parser

 		
 Raster algebra parser

 		
 Keywords, Operators and Functions

 		
 Settings

 		
 Asynchronous raster parsing

 		
 Parser working directory

 		
 All in one parse task

 		
 Parse Batch Size

 		
 S3 Endpoint URL

 		
 API Reference

 		
 Shortcuts

 		
 Raster Utilities

_static/up.png

