
django-raster Documentation
Release 0.3

Daniel Wiesmann and Mike Flaxman

May 18, 2021

Contents

1 Contents 3

2 Indices and tables 17

Index 19

i

ii

django-raster Documentation, Release 0.3

Django-raster provides raster data functionality for Django projects with a PostGIS database backend. It is based on
the Django internal raster data type RasterField and GDAL bindings through GDALRaster.

The django-raster repository is hosted on GitHub.

Contents 1

https://docs.djangoproject.com/en/dev/ref/contrib/gis/model-api/#rasterfield
https://docs.djangoproject.com/en/dev/ref/contrib/gis/gdal/#raster-data-objects
https://github.com/geodesign/django-raster

django-raster Documentation, Release 0.3

2 Contents

CHAPTER 1

Contents

1.1 Installation

Django-raster requires Django >= 1.9 configured with a PostGIS backend and the GDAL library. The use of
Celery is highly recommended (see below).

The package is available on PyPI, you can install it with:

pip install django-raster

To integrate the package into Django, add raster to your INSTALLED_APPS setting like this:

INSTALLED_APPS = (
...
'raster',

)

Django-raster has its own url structure (to serve raster data through a TMS endpoint for instance). To activate those
urls, add the raster urls to your main urlconf:

urlpatterns = [
...
url(r'^raster/', include('raster.urls')),

]

Finally, migrate your database to create the tables required by django-raster:

python manage.py migrate

1.1.1 Distributed Task Management

Django-raster works best with Celery, a distributed task queue manager. Parsing raster files is a process that will time
out most of the time if done through regular http requests. If Celery is installed, several long running tasks will be

3

https://docs.djangoproject.com/en/1.9/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/1.9/ref/contrib/gis/install/geolibs/#gdal
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org

django-raster Documentation, Release 0.3

executed asynchronously in django-raster.

If you have Celery configured for your project, add the following to your project’s settings to tell django-raster to use
it:

RASTER_USE_CELERY = True

1.2 Introduction

Django-raster provides high level utilities to work with raster data in Django. It is based on the Django internal
GDALRaster object and RasterField datatype.

There are three main components in this package:

• Parser utility to ingest rasters through the admin or the django shell.

• Tile Map Service (TMS) endpoint to render raster data.

• Raster calculator to compute and render raster calculator expressions.

Raster files are stored in a file field attached to RasterLayer objects. Data can be added by creating raster layers
through the admin interface or the Django shell.

After creating a RasterLayer object, the raster data will be parsed automatically. The parsing can be executed
asynchronously if Celery is integrated into the Django project. The raster parser will automatically extract the data in
the raster and store it as PostGIS raster tiles on the database.

After ingesting the data, raster styles can be defined through the admin interface which are then used to render the data
through TMS endpoints. The endpoints can be used in Javascript mapping software such as OpenLayers or Leaflet.

1.2.1 Limitations

The main limitation of the django-raster package is that it is focused on single band rasters. For most of the function-
ality, only the first band in the raster is used. While the tile parser processes and stores all bands of the input rasters,
for the TMS endpoints and raster algebra calculations, currently only the first band is used.

Another limitation is that the projection of the raster tiles is fixed to the Web Mercator Projection (EPSG 3857). This
is because a large part of online mapping applications use this projection, especially TMS services.

1.3 Raster Layers

A RasterLayer is django-raster’s representation of raster files. It can be used to input raster data into your applica-
tion. In most cases there is one RasterLayer for each raster file.

1.3.1 Storing a Raster File

Raster files can be uploaded through the admin interface and are stored in the RasterLayer model. Like for
any other model, raster layers can also be created using the Django shell. Each raster file corresponds to one
RasterLayer object. When adding a new raster file, the following properties are required:

• Layer name

• Raster file (either as file, http url or s3 url)

• Data type

4 Chapter 1. Contents

http://celeryproject.org
http://en.wikipedia.org/wiki/GIS_file_formats#Raster
https://docs.djangoproject.com/en/1.9/ref/contrib/gis/gdal/#raster-data-objects
https://docs.djangoproject.com/en/1.9/ref/contrib/gis/model-api/#rasterfield
http://celeryproject.org
http://epsg.io/3857

django-raster Documentation, Release 0.3

The datatype tells django-raster how to interpret the pixel values. The choices are “continuous”, “categorical”, “mask”,
or “rank ordered”. By default, django-raster extracts all other raster metadata from the input file. The optional input
parameters are the following

• Description

• SRID

• Nodata value

• Max zoom value

• Legend

The srid, the nodata value and the maximum zoom value are all determined automatically from the raster properties if
left blank. The max zoom value specifies the highest z-x-y zoom level to create tiles for (see below).

The legend attribute is a foreign key to a raster Legend object. If the raster legend is specified, it is used as default
style when rendering tiles from that raster. How raster tiles are rendered is described in detail in the Rendering tiles
section.

There are also three boolean flags that allow finer grained control over the raster layer parse process.

• Next higher zoom level

• Build pyramids

• Store reprojected

The raster layer is “snapped” to the next higher zoom level by default. To snap the raster to the next lower zoom level
when compared to the true resolution of the data, the “next higher” flag has to be disactivated.

There is a “build pyramids” flag that controls whether the tiles should be created also for the lower zoom levels. This
is enabled by default and is recommended in most cases as the tile renderer will expect those tiles to be present.

During parsing, the raster is reprojected to the web mercator projection. This operation is costly and is only done once
by default. Django-raster stores a reprojected version in a separate model. To prevent the storage of the reprojected
file, the “store reprojected” flag can be disactivated. Note that this will result in less use of storage, but an overhead
when parsing, especially for asynchronous parsing where the file will be reprojected by each worker.

Specifying an Url as Source

The raster file can be uploaded directly using the raster file field, or passed as a url either to a public http(s) address,
or a url like string, pointing directly to an s3 bucket. The http(s) urls are regular web urls.

For the s3 links, the boto3 library is used to directly access an s3 bucket and download it from there. In this way,
private or requester-pays buckets can be used as source. The credentials for accessing the buckets need to be configured
so that boto3 can see them.

The url should have the following structure

s3://BUCKET_NAME/BUCKET_KEY

for instance,

s3://sentinel-s2-l1c/tiles/12/S/VG/2017/9/15/0/B12.jp2

gets the same file as the following regular http url

http://sentinel-s2-l1c.s3.amazonaws.com/tiles/12/S/VG/2017/9/15/0/B12.jp2

1.3. Raster Layers 5

django-raster Documentation, Release 0.3

but instead of making a regular web request, it accesses the file using boto3.

Note that for requester pays bucket this might incur charges even if the requester is not the owner of the bucket.

1.3.2 Raster Tile Creation

Upon uploading a file, django-raster automatically parses the raster file. The parser extracts metadata from the raster
and its bands, and creates tiles. The progress or possible errors in parsing is written to a parse log object, which is
exposed on the RasterLayer admin interface.

The parser automatically creates a tile pyramid in the z-x-y scheme of a TMS. By default, the highest zoom level for
which to create tiles is calculated automatically from the resolution of the raster. The zoom level is set such that the
resolution of the highest zoom is at least the original resolution. This behavior can be changed by manually setting the
highest zoom level, using the max_zoom_value field.

The tiles are stored as RasterTile objects. The raster data itself is stored as PostGIS rasters through a RasterField.
The tiles are managed automatically through their parent RasterLayer object, and do normally not require any
manual user manipulation.

Asynchronous Parsing

It is highly recommended to configure the Django application with Celery, to parse the rasters asynchronously. For
most raster files, the creation of tiles takes several minutes or even hours to complete. Since the parsing is triggered
automatically upon upload, the html requests in the admin will often time out. For more information about how to
configure Celery, consult the Installation section.

1.4 Rendering tiles

After creating and parsing a RasterLayer, the tiles for that layer can be accessed through the tiles url. The raster
urls have to be added to the application’s url patterns. Here we assume that the /raster/ base url is used as proposed
in the Installation section.

The tiles url is structured as follows,

/raster/tiles/layer_id/{z}/{x}/{y}.png

where the layer_id is the primary key of a raster layer. This structure can be used directly in online mapping
software such as OpenLayers or Leaflet. An example request could look like this: /raster/tiles/23/8/536/
143.png, returning a tile in png format of the layer with ID pk=23 at zoom level z=8 and indexes x=536 and
y=143.

By default, the tiles are rendered using simple grayscale. To apply a custom colormap, a Legend needs to be assigned
to the layer. Raster layers have an optional foreign key to a Legend object, which can be set through the admin
interface.

1.4.1 Legends

Legends are objects that are used to interpret raster data. This includes the cartographic information (colors), but also
the semantics of the data (such as names). Legends be created through the admin interface.

A legend is stored as in the Legend model, which is a collection of LegendEntry objects. Each of the entries have
an expression for classifying the data and a semantic meaning of the expression. The semantics of the expression are
stored in the LegendSemantics model. Here is an example for a legend representing two temperatures:

6 Chapter 1. Contents

https://docs.djangoproject.com/en/1.9/ref/contrib/gis/model-api/#rasterfield
http://celeryproject.org
http://openlayers.org/
http://leafletjs.com/

django-raster Documentation, Release 0.3

>>> from raster.models import Legend, LegendEntry, LegendEntryOrder, LegendSemantics
>>> hot_semantics = LegendSemantics.objects.create(name='Hot')
>>> cold_semantics = LegendSemantics.objects.create(name='Cold')
>>> hot_entry = LegendEntry.objects.create(semantics=cold, expression='0', color='
→˓#0000FF')
>>> cold_entry = LegendEntry.objects.create(semantics=hot, expression='1', color='
→˓#FF0000')
>>> legend = Legend.objects.create(title='Temperatures')
>>> LegendEntryOrder.objects.create(legend=legend, legendentry=entry, code='1')
>>> legend.json
... '[{"color": "#FFFFFF", "expression": "1", "name": "Earth"}]'

Legend Entries

LegendEntry entries relate semantics and a color value with a range of pixel values. One entry has a foreign key to
a LegendSemantics object, a color in hex format and an expression.

The expression is a classification of pixels. It describes a range of pixel values in the data. It is either an exact number
for discrete rasters, or a formula for continuous rasters:

expression = "3" # Matches all pixels with an exact value of 3

For more complicated expressions, a logical expression can be specified through a formula. The variable x represents
the pixel value in the formula. Here are two examples of valid formula expressions:

Match pixel values bigger than -3 and smaller or equal than 1
expression = "(-3.0 < x) & (x <= 1)"
Match all pixels with values smaller or equal to one
expression = "x <= 1"

Formula expressions are currently not validated on input. Wrongly specified formulas might lead to errors when
rendering raster tiles. Check your formulas if unexpected errors happen on the TMS endpoints.

Continuous Color Schemes

The examples above show how to assign discrete pixel value ranges to individual colors. This allows applying discrete
color schemes with a limited number of breaks to continuous rasters.

Django-raster also supports applying continuous color scales. Colormaps are interpreted as continuous color schemes
if the keyword continuous is provided as a key in the colormap dictionary.

The continuous color scheme requires at least two colors, which are interpolated over the range of pixel values. These
colors can be specified using the from and to keywords. A third color can be specified to force interpolation through
another color in the middle of the range. This intermediate color can be specified using the over key.

The range over which the colors are interpolated is determined automatically from the raster layer metadata if possible,
and falls back to the range of the individual tile data. The fallback might result in a visually confusing color scheme,
as the range of pixel values in a single tile may vary substantially and are not representative of the raster. The range
can therefore also be specified manually using the range parameter.

An example for a continuous color scheme, which will interpolate all values from 0 to 100 into colors ranging from
red to blue over green is the following:

{
"continuous": "True",

(continues on next page)

1.4. Rendering tiles 7

django-raster Documentation, Release 0.3

(continued from previous page)

"from": [255, 0, 0],
"to": [0, 0, 255],
"over": [0, 255, 0],
"range": [0, 100]

}

The keys continuous, from and to are required. The over key is an optional intermediate color for the in-
terpolation. The range key specifies the pixel values over which to interpolate. This parameter is estimated from
metadata if not provided in the legend. All other keys are ignored in the continuous color mode, which is triggered if
the continuous key is found in the legend.

1.4.2 Overriding the colormap and the legend

While a legend and a colormap can be associated with a raster layer objects in the database it is nonetheless possible
to overwrite the legend or colormap used to render the tiling. Overriding is done via the following url parameters:

Parameter Description
legend Use given legend to render the tiles
store One of database, session. Fetch legend from database or session, default is database
colormap Overrides the raster layer’s legend colormap.

Examples

If you want to overrides the legend to use MyOtherLegend stored in database you can use the following url for the
tiling (assuming 23 is your rasterlayer_id):

/raster/tiles/23/{z}/{x}/{y}.png?legend=MyOtherLegend

If you want to use the legend from the session with the same name as above you can use following one:

/raster/tiles/23/{z}/{x}/{y}.png?legend=MyOtherLegend&store=session

Note: You can set and get a session colormap with the help of shortcuts functions set_session_colormap()
and get_session_colormap().

And finally if you want to provide this custom colormap

{
"1": "#FF0000",
"2": "#00FF00",
"3": "#0000FF"

}

you can do so by using this url:

/raster/tiles/{z}/{x}/{y}.png?colormap=%22%7B1%3A%20'%23FF0000'%2C%202%3A%20'%2300FF00
→˓'%2C%203%3A%20'%230000FF'%7D%22

The colormap value is the URIEncoded version of the json stringified colormap object.

8 Chapter 1. Contents

django-raster Documentation, Release 0.3

1.4.3 Image formats

All endpoints (regular tiles, algebra and RGB) support three formats: PNG, JPEG and TIFF. The different formats can
be requested by changing the file extension in the url. The extensions to use are .png, .jpg, and .tif.

The PNG and JPEG endpoints behave the same way, except that JPEG images do not support an alpha channel. Nodata
pixels are rendered in black.

The TIFF endpoint will return the raw data produced from the request in a georeferenced GeoTIFF file. It therefore
ignores any of the rendering parameters and simply returns the raw values of the result of the request. This might
be useful for analysis purposes, where raster algebra results can be obtained in raw form for further downstream
processing.

1.5 Raster Algebra

Django-raster has raster calculator functionality. The raster calculator allows rendering raster tiles based on algebraic
formulas. The use is very similar to a standard z/x/y tile endpoint, but allows the evaluation of a broad range of
algebraic expressions applied to existing pixel values. The z/x/y structure can be used directly in online mapping
software such as OpenLayers or Leaflet.

Similar to the regular tiles endpoint, the django-raster url patterns need to be installed for the raster algebra endpoint to
work. For the documentation we assume that the /raster/ base url is used as proposed in the Installation section.

1.5.1 Raster algebra TMS endpoint

The raster algebra url base is used only to specify the z/x/y tile index. All the rest of the configuration is done
through the query parameters. The input to the raster algebra is a named list of RasterLayer ids and a formula for
evaluation. These values are passed to the backend through two required query parameters: layers and formula.

The layers query parameter identifies which raster layers to use for evaluation. It is a comma separated list of variable-
name and RasterLayer id pairs. The variable names are matched with the names in the formula. An example is
layers=a=2,b=4 which will match RasterLayer with id 2 to variable name a and the layer with id 4 with the
variable name b.

The formula query parameter is a string specifying a formula for evaluation. The formula is an algebraic expression
based on the names given to the layers in the layers query parameter. The formula has to be an expression that can
be evaluated by the FormulaParser. It accepts a broad range of algebraic expressions. The endpoint supports most
of the common mathematical operators (+, -, *, /, etc), functions (sin, cos, exp, etc.), and logical operators (&, !,
>, =, etc.). It also has a set of predefined constants through reserved keywords such as pi PI or the Euler number E.

Putting it all together, an example request to the raster algebra endpoint could look like this:

/raster/algebra/{z}/{x}/{y}.png?layers=a=1,b=3,c=6&formula=log(a+b)*c&legend=5

In addition to the required query parameters: layers and formula, a Legend id can be specified using the
legend query parameter. If specified, the legend will be used to interpret the result of the algebra expression. This is
convenient to use predefined colormaps for the endpoint.

Dynamic colormap

For a more dynamic rendering scheme, a dynamic colormap can be passed to the endpoint using the colormap query
parameter. The following request would color all pixels that result in a value bigger than zero in red, and all other
pixels in green.

1.5. Raster Algebra 9

http://openlayers.org/
http://leafletjs.com/

django-raster Documentation, Release 0.3

/raster/algebra/{z}/{x}/{y}.png?layers=a=1,b=3,c=6&formula=log(a+b)*c&colormap={'x>0':
→˓'#FF0000','x<=0':'#00FF00'}

Using specific bands

By default, the algebra and rgb endpoints use the first band in each layer specified. To use a specific band, use a
'variable:band' syntax, where variable is the name of the variable, and band is the band index. For example
{'a:3': 23} would match band 3 of the RasterLayer with the id 23 to the variable name a.

Encoding

Both the colormap and the formula should be properly url encoded. The examples here are not encoded and should be
considered as instructive examples only.

RGB endpoint

The algebra endpoint can also be used to render RGB images. For this, only three query parameters are expected: r,
g, and b. If these three parameters are found in the list of query parameters, and no formula has been specified, the
three input bands are interpreted as RGB channels of an RGB image. For example to use raster layer with id 1 as red,
id 3 as green and id 6 as blue, the following url can be used:

/raster/algebra/{z}/{x}/{y}.png?layers=r=1,g=3,b=6

If the raw data in the tiles is not already scaled to the range [0, 255], an additional scaling factor can be specified,
which will be used to rescale all three bands to the default RGB color range. For instance, the following query would
assume that the input bands have values in the range of [5, 10000], and would rescale them to the RGB color space.

/raster/algebra/{z}/{x}/{y}.png?layers=r=1,g=3,b=6&scale=5,10000

An alpha channel can be activated by passing the alpha query parameter. The alpha parameter makes all the pixels
transparent that have values equal to 0 in all three RGB channels.

For multi band rasters that have the rgb channels as bands and not in separate files, the band accessor syntax can be
used. For instance, if the layer with id 23 is a 3-band RGB raster, the following would render the tiles as RGB using
bands 0, 1, and 2:

/raster/algebra/{z}/{x}/{y}.png?layers=r:0=23,g:1=23,b:2=23

Image Enhancement

The algebra and TMS endpoints support image enhancement using the ImageEnhance PIL module. The following
query parameters arguments are passed to the corresponding image enhancers. The parameter value is passed to the
enhancer as factor argument.

Table 1: Enhancer query parameters.
Query Enhancer
enhance_color ImageEnhance.Color
enhance_contrast ImageEnhance.Contrast
enhance_brightness ImageEnhance.Brightness
enhance_sharpness ImageEnhance.Sharpness

10 Chapter 1. Contents

django-raster Documentation, Release 0.3

The following example enhances the contrast of tiles from the RGB endpoint by a factor of 3:

/raster/algebra/{z}/{x}/{y}.png?layers=r=1,g=3,b=6&scale=5,10000&enhance_contrast=3

1.5.2 Pixel Value Lookup

Single pixel values for raster algebra expressions can be looked up by coordinates. The endpoint works very similar to
the raster algebra TMS endpoint, but instead of Z-X-Y tile indices, coordinates are passed through the url. The query
parameters are analogue to the algebra TMS endpoint as described above.

The base url structure is

/raster/pixel/{xcoord}/{ycoord}/

For instance, the following request will return the pixel value of the requested raster algebra expressino for the coordi-
nates xcoord = -9218229 and ycoord = 3229269. The coordinates must be provided in the web mercator
projection (EPSG 3857).

/raster/pixel/-9218229/3229269/?layers=a=1,b=3,c=6&formula=log(a+b)*c

1.5.3 Formula parser

At the heart of the raster calculator is the FormulaParser, which is based on the pyparsing package. The
FormulaParser is a general purpose formula evaluation class. It is It does not know about rasters and oper-
ates with Numpy arrays directly. To use it, you need a dictionary with Numpy arrays of equal shape and a formula as
string. The keys in the dictionary are the variable names and are used to match data to variables in the formula. Here
are some examples of how to use the formula parser:

Import parser and instantiate an instance.
>>> from raster.algebra.parser import FormulaParser
>>> parser = FormulaParser()
Create a data dictionary and evaluate a simple sum.
>>> data = {'a': range(5), 'b': range(5)}
>>> formula = 'a + b'
>>> parser.evaluate(data, formula)
... array([0, 2, 4, 6, 8])
Use the sin function and divide by b.
>>> formula = 'sin(a) / b'
>>> parser.evaluate(data, formula)
... array([nan, 0.84147098, 0.45464871, 0.04704, -0.18920062])
Use a logical array.
>>> data.update({'a_new_var': [True, False, False, True, False]})
>>> formula = '!a_new_var * a + 3'
>>> parser.evaluate(data, formula)
... array([3., 4., 5., 3., 7.])
Use the PI keyword in a formula.
>>> formula = 'a * PI'
>>> parser.evaluate(data, formula)
>>> array([0. , 3.14159265, 6.28318531, 9.42477796, 12.56637061])

1.5.4 Raster algebra parser

The RasterAlgebraParser class is a wrapper that can be used to apply the generic formula parser to raster
objects directly. The use is identical to the generic case except that the objects in the data dictionary are expected to

1.5. Raster Algebra 11

http://pyparsing.wikispaces.com/

django-raster Documentation, Release 0.3

be :class:GDALRaster objects. The data arrays are extracted from the raster objects automatically and are passed to
the formula parser. The result array is converted into a GDALRaster before returning.

By default, the first band is used for calculations, to specify a specific band to be used the syntax is
'variable:band', where variable is the name of the variable, and band is the band index. For example {'a:3':
rst} would match band 3 of the GDALRaster rst to the variable name a.

Here is a complete example for how to use the RasterAlgebraParser.

>>> from raster.algebra.parser import RasterAlgebraParser
>>> parser = RasterAlgebraParser()
>>> base = {
>>> 'datatype': 1,
>>> 'driver': 'MEM',
>>> 'width': 2,
>>> 'height': 2,
>>> 'srid': 3086,
>>> 'origin': (500000, 400000),
>>> 'scale': (100, -100),
>>> 'skew': (0, 0),
>>> 'bands': [
>>> {'nodata_value': 10},
>>> {'nodata_value': 10},
>>> {'nodata_value': 10},
>>>],
>>> }
>>> base['bands'][0]['data'] = range(20, 24)
>>> base['bands'][1]['data'] = range(10, 14)
>>> rast1 = GDALRaster(base)
>>> base['bands'][0]['data'] = [1, 1, 1, 1]
>>> rast2 = GDALRaster(base)
>>> base['bands'][0]['data'] = [30, 31, 32, 33]
>>> base['bands'][0]['nodata_value'] = 31
>>> rast3 = GDALRaster(base)
>>> data = dict(zip(['x:1', 'y:0', 'z'], [rast1, rast2, rast3]))
>>> rst = parser.evaluate_raster_algebra('x*(x>11) + 2*y + 3*z*(z==30)')
>>> rst.bands[0].data()
... array([[10., 10.],
... [14., 15.]])

1.5.5 Keywords, Operators and Functions

The following tables list the available operators, functions and reserved keywords from the FormulaParser and
the corresponding raster calculator.

Table 2: Keyword symbols
Keyword Symbol
Euler Number E
Pi PI
True Boolean TRUE
False Boolean FALSE
Null NULL
Infinite INF

12 Chapter 1. Contents

django-raster Documentation, Release 0.3

Table 3: Operator symbols
Operator Symbol
Add +
Substract -
Multiply *
Divide /
Power ^
Equal ==
Not Equal !=
Greater >
Greater or Equal >=
Less <
Less or Equal <=
Logical Or |
Logial And &
Logcal Not !
Fill Nodata Values ~
Unary And +
Unary Minus -
Unary Not !

Table 4: Function symbols
Function Symbol
Sinus sin
Cosinus cos
Tangens tan
Natural Logarithm log
Exponential Function exp
Absolute Value abs
Integer int
Round round
Sign sign
Minimum min
Maximum max
Mean mean
Median median
Standard Deviation std
Sum sum

1.6 Settings

A list of available settings to customize django-raster’s behavior.

1.6.1 Asynchronous raster parsing

Determines whether to use celery tasks for parsing raster layers. It is highly recommended to configure celery, as raster
parsing can take quite a while and the parsing through normal web requests will often timed out, even for medium
sized raster.

1.6. Settings 13

django-raster Documentation, Release 0.3

RASTER_USE_CELERY = False

1.6.2 Parser working directory

Use this to specify a custom working directory used by the django-raster package when parsing raster files. This is
where intermediate files are stored. Defaults to the normal temporary directory of the machine.

RASTER_WORKDIR = None

1.6.3 All in one parse task

For some applications where the size of the rasters is small, the distributed raster parsing might have more overhead
than gain. The distributed parsing can be disactivated with the following setting. If it is set to True, rasters are parsed
in single celery tasks.

RASTER_PARSE_SINGLE_TASK = True

1.6.4 Parse Batch Size

During parsing of a raster, tiles are written to the database in batches, using the bulk_create method. The size of
each batch in the loop can be controlled by using the setting below. Defaults to 500 tiles.

RASTER_BATCH_STEP_SIZE = 500

1.6.5 S3 Endpoint URL

Set the S3 compatible endpoint used when retrieving raster tile sources from S3.

RASTER_S3_ENDPOINT_URL = "http://localhost:4572"

1.7 API Reference

1.7.1 Shortcuts

set_session_colormap(session, key, colormap)
Store the colormap in the user session.

get_session_colormap(session, key)
Get the colormap form a legend stored in the user session and identified by key.

1.7.2 Raster Utilities

Django-raster hosts some utilities that ease the interaction with raster data. The functions are located in raster.
utils and raster.tiles.utils.

14 Chapter 1. Contents

django-raster Documentation, Release 0.3

pixel_value_from_point(raster, point, band=0)
Return the pixel value for the coordinate of the input point from selected band.

The input can be a point or tuple, if its a tuple it is assumed to be a pair of coordinates in the reference system
of the raster. The band index to be used for extraction can be specified with the band keyword.

Example:

Create a raster.
>>> raster = GDALRaster({

'width': 5,
'height': 5,
'srid': 4326,
'bands': [{'data': range(25)}],
'origin': (2, 2),
'scale': (1, 1)

})
Create a point at origin
>>> point = OGRGeometry('SRID=4326;POINT(2 2)')
Get pixel value at origin.
>>> pixel_value_from_point(raster, point)
... 0
Get pixel value from within the raster, using coordinate tuple input.
>>> pixel_value_from_point(raster, (2, 3.5))
... 5

1.7. API Reference 15

django-raster Documentation, Release 0.3

16 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

17

django-raster Documentation, Release 0.3

18 Chapter 2. Indices and tables

Index

G
get_session_colormap() (built-in function), 14

P
pixel_value_from_point() (built-in function),

14

S
set_session_colormap() (built-in function), 14

19

	Contents
	Indices and tables
	Index

